Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Characteristics of a Diesel Spray Impinging on a Flat Wall

1989-02-01
890264
In a small high-speed DI diesel engine, injected fuel sprays impinge on the wall of piston cavity. Discussion and analysis of the combustion phenomena in the diesel engine demand the measurement of the characteristics of the impinging spray. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air or CO2 gas at room temperature was charged. The single spray was impinged on a flat wall at a normal angle. The growth of the spray was photographed, not only with transmitted light but also with scattered light through a narrow slit. The temporal and spatial distribution of the droplets density in the impinging spray applying the concentric circle model was calculated using the data of the laser light extinction method. From these results, the detailed information concerning the droplets density in the impinging diesel spray was obtained.
Technical Paper

Distribution of Fuel Droplets, Hydrocarbon and Soot in Diesel Combustion Chamber

1983-02-01
830456
Distribution of injected fuel droplets, total hydrocarbon concentration and soot concentration in the combustion chamber of a diesel engine with a swirl chamber have been measured microscopically with regard to the time and the space by means of optical method. As a result of this study, effect of the swirl flow on atomized droplet distribution, relation between the droplets and hydrocarbon concentration, and relation between the change in concentration gradient of hydrocarbon with the time and the velocity of the swirl flow, and effect of non-luminous flame on the time of heat release rate raising period have been obtained. And from spatial distributions of hydrocarbon concentration, soot concentration, and local temperature in the combustion chamber at each time, the locational characteristics of soot generation are clarified. Further, effects of hydrocarbon and local temperature on soot generation have been considered.
Technical Paper

Transient Characteristics of Fuel Atomization and Droplet Size Distribution in Diesel Fuel Spray

1983-02-01
830449
The purposes of this study are to clarify the atomization mechanism, the change over time in droplet size distribution, and the change in spray characteristics dependent on back pressure on diesel fuel spray. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking direct microscopic photographs varying the moment of exposure, the back pressure, and the ambient density. The results show that the mechanism of spray atomization is divided into 4 processes, and spatial distribution of breakup droplets and a droplet volume rate are assessed for the whole spray region. Total and local distributions of droplet size are expressed by empirical equations as a function of time elapsed from the moment of injection. It is confirmed that the uniformity of the distribution, Sauter mean diameter of droplets, and droplet production rate change with time. Mean droplet diameter is further described in relation to the pressure drop and the ambient density.
X